
Inheritance
• Inheritance is one of the feature of Object-Oriented Programming.

• Inheritance is the mechanism in java by which one class is allowed to inherit the
features(fields and methods) of another class.

• Super Class: The class whose features are inherited is known as superclass(or a
base class or a parent class).

• Sub Class: The class that inherits the other class is known as a subclass(or a
derived class, extended class, or child class). The subclass can add its own fields and
methods in addition to the superclass fields and methods.

• Reusability: Inheritance supports the concept of “reusability”, i.e. when we want to
create a new class and there is already a class that includes some of the code that
we want, we can derive our new class from the existing class. By doing this, we are
reusing the fields and methods of the existing class.

• The keyword used for inheritance is extends.

• Inheritance is also known as the IS-A relationship.

The extends keyword indicates that you are making a new class that derives from an existing class. The meaning of
"extends" is to increase the functionality.

A subclass inherits all the members (fields, methods, and nested classes) from its superclass. Constructors are not

members, so they are not inherited by subclasses, but the constructor of the superclass can be invoked from the

subclass.

A subclass does not inherit the private members of its parent class. However, if the superclass has public or protected

methods for accessing its private fields, these can also be used by the subclass.

By creating the object of the subclass you can access the members of a superclass and subclass.

To access the members of both classes it is recommended to always create reference variable to the subclass.

Types of Inheritance in Java

 • The different types of Inheritance are:
• Single Inheritance

• Multiple Inheritance

• Multi-Level Inheritance

• Hierarchical Inheritance

• Hybrid Inheritance

• Single Inheritance

• Creating subclasses from a single base class is called single inheritance.

Output:

Inside class A values =10 20

Inside Class B values =10 20 30

• Multiple Inheritance in Java:
Defining derived class from numerous base classes is known as ‘Multiple Inheritance’. In
this case, there is more than one superclass, and there can be one or more subclasses.

Multiple inheritances are available in object-oriented programming with C++, but it is not

available in Java.

Java developers want to use multiple inheritances in some cases. Fortunately, Java

developers have interface concepts expecting the developers to achieve multiple

inheritances by using multiple interfaces.

Ex: class Myclass implements interface1, interface2,….
Consider a class A, class B and class C. Now,

let class C extend class A and class B. Now,

consider a method read() in both class A and

class B. The method read() in class A is

different from the method read() in class B.

But, while inheritance happens, the compiler

has difficulty in deciding on which read() to

inherit. So, in order to avoid such kind of

ambiguity, multiple inheritance is not supported
in Java.

Multilevel Inheritance in Java:
In Multi-Level Inheritance in Java, a class extends to another class that is already

extended from another class. For example, if there is a class A that extends class B and

class B extends from another class C, then this scenario is known to follow Multi-level

Inheritance.

We can take an example of three classes, class Vehicle, class Car and class SUV.

Here, the class Vehicle is the grandfather class. The class Car extends class Vehicle

and class SUV extends class Car.

Hybrid Inheritance:

Hybrid inheritance is one of the inheritance types in Java which is a combination of Single and Multiple inheritance.

Java doesn't support hybrid/Multiple inheritence

Super keyword in Java:

 • The super keyword is similar to this keyword. Following are the
scenarios where the super keyword is used.

• It is used to differentiate the members of superclass from the members of
subclass, if they have same names.

• It is used to invoke the superclass constructor from subclass.

differentiate the members

invoke the superclass constructor

super keyword can also be used to access the parent class constructor. One more important thing is that, ‘’super’ can
call both parametric as well as non parametric constructors depending upon the situation.

Output:

Person class Constructor

Student class Constructor

Final keyword
• The final keyword in java is used to restrict the user. The java final keyword can be used in many

context. Final can be:

1.Variable (stop value change of a variable)

2.Method (stop method overriding)

3.Class (stop inheritance)

Java final variable
• If you make any variable as final, you cannot change the value of final variable(It will be constant).

class Bike

{

 final int speedlimit=90;//final variable

 void run()

{

 speedlimit=400;

 }

 public static void main(String args[])

{

 Bike obj=new Bike();

 obj.run();

 }

 }//end of class

• Output: error: cannot assign a value to final variable speedlimit
speedlimit=400;
^

Java final method:
If you make any method as final, you cannot override it. final method is inherited but you cannot override it.

Java final class:
If you make any class as final, you cannot extend it.

Object class in Java
 • Object class is present in java.lang package.

• The Object class is the parent class of all the classes in java by default.
In other words, it is the topmost class of java.

• Every class in Java is directly or indirectly derived from the Object class.

• If a Class does not extend any other class then it is direct child class
of Object and if extends other class then it is an indirectly derived.

• The Object class provides some common behaviors to all the objects

• The Object class methods are available to all Java classes. Hence Object
class acts as a root of inheritance hierarchy in any Java Program.

• toString() :toString() provides String representation of an Object and
used to convert an object to String. The default toString() method for
class Object returns a string consisting of the name of the class of which
the object is an instance, the at-sign character `@’, and the unsigned
hexadecimal representation of the hash code of the object.

Whenever we try to print any Object reference, then internally toString() method is called.

The default toString() method in Object prints “class name @ hash code”. We can override toString() method in our
class to print proper output. For example, in the following code toString() is overridden to print “Real + i Imag” form.

hashCode() : For every object, JVM generates a unique number which is hashcode. It returns distinct integers for

distinct objects. A common misconception about this method is that hashCode() method returns the address of object,

which is not correct. It convert the internal address of object to an integer by using an algorithm. The hashCode()

method is native because in Java it is impossible to find address of an object

Override of hashCode() method needs to be done such that for every object we generate a unique number. For
example,for a Student class we can return roll no. of student from hashCode() method as it is unique.

getClass() : Returns the class object of “this” object and used to get actual runtime class of the object.

finalize() method : This method is called just before an object is garbage collected. It is called by the Garbage

Collector on an object when garbage collector determines that there are no more references to the object. We should

override finalize() method to dispose system resources, perform clean-up activities and minimize memory leaks.

https://www.geeksforgeeks.org/garbage-collection-java/
https://www.geeksforgeeks.org/garbage-collection-java/

clone() : It returns a new object that is exactly the same as this object.

 Test ob2 = (Test)ob1.clone();

class Test implements Cloneable{

//write clone method in Test class

public Object clone()throws CloneNotSupportedExceptio

n

{

return super.clone();

}

Polymorphism

• Polymorphism in Java is a concept by which we can perform a single
action in different ways. Polymorphism is derived from 2 Greek words:
poly and morphs. The word "poly" means many and "morphs" means
forms. So polymorphism means many forms.

• An individual can have different relationships with different people. A
woman can be a mother, a daughter, a sister, a friend, all at the same
time, i.e. she performs other behaviours in different situations.

• There are two types of polymorphism in Java:
1. static or compile-time polymorphism

2. Dynamic or runtime polymorphism

• Compile-Time Polymorphism

• Compile-Time polymorphism in java is also known as Static
Polymorphism. In this process, the call to the method is resolved at
compile-time. Compile-Time polymorphism is achieved through Method
Overloading.

Method Overloading is when a class has multiple methods with the same name, but the number, types and order of

parameters and the return type of the methods are different. Java allows the user freedom to use the same name for

various functions as long as it can distinguish between them by the type and number of parameters.

Runtime Polymorphism

Runtime polymorphism in java is also known as Dynamic Binding or Dynamic Method Dispatch. In this process,

the call to an overridden method is resolved dynamically at runtime rather than at compile-time. Runtime

polymorphism is achieved through Method Overriding.

Method overriding, on the other hand, occurs when a derived class has a definition for one of the member functions of

the base class. That base function is said to be overridden.

Running fast at 120 km.

Abstract classes
• A class which is declared with the abstract keyword is known as an abstract

class in Java.

• Abstract class: is a restricted class that cannot be used to create objects (to
access it, it must be inherited from another class).

• Abstract class can have abstract(method with no body) and non-abstract
methods (method with the body).

• It needs to be extended and its method implemented. It cannot be instantiated.

• It can have constructors and static methods also.

Abstract Method in Java

• A method which is declared as abstract and does not have implementation is
known as an abstract method.

Example of abstract class and method

 abstract class nameoftheclass{ }

 abstract void printStatus();//no method body and abstract

• There are two ways to achieve abstraction in java
1.Abstract class
2.Interface

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-constructor

